Tag Archives: hollow hydraulic jack

China Custom Rch-121, 13.8 Ton Capacity, 1.63 in Stroke, Single-Acting, Hollow Plunger Hydraulic Jack Cylinder CZPT Same wholesaler

Product Description

Product Description

KS-RCH Series, Single-acting Hollow Plunger Cylinder (Spring Return)
 

1. CHINAMFG center hole hydraulic jack cylinder provide versatility in testing, maintenance andtensioning applications. The hollow plunger design allows for both pull and push forces.
2. Single-acting spring return.
3. Cylinders are nickel-plated, floating center tube on models over 20 tons increases product life.
4. Baked enamelfinish for increased corrosion resistance.
5.Collar threads for easy fixturing6.RCH-120 cylinders include AR-630 coupler and has 1/4 NPTF port.
7. RCH-121 and RCH-1211 cylinders have FZ-1630 reducer and AR-630 coupler, all other modelsfeature CR-400 coupler

Very low price and very good quality , compare POWER TEAM and CHINAMFG models, this type airhydraulic pump was same quality and function

RCH-121 Single-acting Hollow Plunger Hydraulic Cylinder

Max Operating Pressure:   700Bar / 10,000Psi
Capacity:                             13tons 
Stroke:                                 42mm / 1.63in
Collapsed Height:              120mm / 4.75in  
Center Hole Dia.:                19.6mm / 0.77in     
Return Type:                       Single-Acting, Spring Return
Plungler Type:                    Hollow
Material:                              Alloy Steel
Oil Capacity:                      75cm³
Weight:                               2.8kg / 6.2Ibs

 

Hydraulic Manual Pump Set
Including:

1*  Single-acting Manual Pump,          P-120
1*  Hydraulic Cylinder,                         RCH-121, 13tons, 42mm stroke
1*  Pressure Guage with coupler,        KN-63-70
1*  Guage Adapter,                                GA-3
1*  1.8meter High Pressure Hose with couplers

Pump Details:
Oil tank–350ml, Oil port: 3/8”

Product Parameters

Quick Selection Chart :

For complete techniacl information please contact the sales.

Model Capacity
(ton)
Stroke B
(mm)
Oil Capacity
(cm3)
Collaps.Height
A(mm)
Outside Dia.
D(mm)
Effective Area
(cm2)
Saddle Protr. from Plgr.
K (mm)
Center Hole Dia.
O(mm)
Bolt Circle
Z(mm)
Weight
(KG)
KSRCH-120 13 8 14 55 69 17.9 19.6 50.8 1.5
KSRCH-121* 42 75 120 2.8
KSRCH-1211 42 75 120 2.8
KSRCH-123 76 136 184 50.8 4.4
KSRCH-202* 20 49 150 162 98 30.7 9.7 26.9 82.6 7.7
KSRCH-206 155 476 306 14.1
KSRCH-302* 30 64 298 178 114 46.6 9.0 33.3 92.2 10.9
KSRCH-306 155 722 330 21.8
KSRCH-603* 60 76 626 247 159 82.3 12.0 53.8 130.3 28.1
KSRCH-606 153 1259 323 35.4
KSRCH-1003* 100 76 1011 254 212 133.0 12.0 79.0 177.8 63.0

Please tell me your needs, i will give you a suitable sloution~

Cases Show

We can make different types cylinders according to various construction requirements….
Please contact 
Davina Chen:  -199-5169-4295 for detals.

Related Products

All tools can be ordered separately , please tell seller your rquirements.

We recommend the suitable tools for you~

Company Profile

Payment & Shipping

If you don’t have a forwarder in China, please contact sales.      We will quote you the cheapest / fastest shipping cost.

We supply:

All express , by sea , by air , by sea to door , by air to door ….etc..

Contacter:
Davina Chen:  -199-5169-4295

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Hydraulic
Adjusted Form: Regulated Type
Samples:
US$ 152/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do manufacturers ensure the durability and reliability of hydraulic cylinders?

Manufacturers employ various strategies and techniques to ensure the durability and reliability of hydraulic cylinders. These measures are crucial as hydraulic cylinders are often subjected to demanding operating conditions and heavy loads. To ensure their longevity and dependable performance, manufacturers focus on the following aspects:

1. High-Quality Materials:

– Manufacturers use high-quality materials in the construction of hydraulic cylinders. Components such as cylinder barrels, piston rods, seals, and bearings are made from materials that possess excellent strength, corrosion resistance, and wear resistance properties. Common materials used include high-grade steel alloys, chrome-plated rods, and specialized coatings. The selection of appropriate materials ensures that hydraulic cylinders can withstand the stresses, pressures, and environmental conditions they encounter during operation.

2. Robust Design:

– Hydraulic cylinders are designed to withstand high loads and harsh operating conditions. Manufacturers use computer-aided design (CAD) software and finite element analysis (FEA) techniques to optimize the cylinder’s structural integrity and performance. The design includes factors such as proper wall thickness, reinforcement in critical areas, and appropriate sizing of components. Robust design practices ensure that hydraulic cylinders can withstand the forces and stresses they encounter, preventing premature failure and ensuring durability.

3. Quality Manufacturing Processes:

– Manufacturers follow stringent quality control measures during the manufacturing processes of hydraulic cylinders. These processes include precision machining, welding, heat treatment, and surface finishing. Skilled technicians and advanced machinery are employed to ensure dimensional accuracy, proper fitment of components, and overall quality. By adhering to strict manufacturing processes and quality standards, manufacturers can produce hydraulic cylinders with consistent performance and reliability.

4. Sealing Technology:

– The sealing system of hydraulic cylinders is critical for their durability and reliability. Manufacturers utilize advanced sealing technologies such as lip seals, O-rings, and composite seals to prevent fluid leakage and ingress of contaminants. Properly designed and high-quality seals ensure that hydraulic cylinders can maintain their performance over extended periods. Seals are tested for their compatibility with the hydraulic fluid, pressure resistance, and resilience to environmental factors such as temperature and humidity.

5. Performance Testing:

– Manufacturers subject hydraulic cylinders to rigorous performance testing to validate their durability and reliability. These tests simulate real-world operating conditions and evaluate factors such as load capacity, pressure resistance, fatigue life, and leakage. Performance testing helps identify any design flaws or weaknesses in the hydraulic cylinder and allows manufacturers to make necessary improvements. By conducting thorough performance testing, manufacturers can ensure that hydraulic cylinders meet or exceed the required performance standards.

6. Compliance with Industry Standards:

– Manufacturers adhere to industry standards and regulations to ensure the durability and reliability of hydraulic cylinders. These standards, such as ISO 6020/6022 and NFPA T3.6.7, provide guidelines for design, manufacturing, and performance requirements. By following these standards, manufacturers ensure that hydraulic cylinders are designed and built to meet specific quality and safety criteria. Compliance with industry standards helps establish a baseline for durability and reliability and instills confidence in the performance of hydraulic cylinders.

7. Regular Maintenance and Service:

– Manufacturers provide recommendations for regular maintenance and service of hydraulic cylinders. This includes guidelines for lubrication, inspection of components, and replacement of wear parts such as seals and bearings. Following the manufacturer’s maintenance guidelines helps ensure the long-term durability and reliability of hydraulic cylinders. Regular maintenance also allows for the early detection of potential issues, preventing major failures and extending the service life of the hydraulic cylinders.

8. Customer Support and Warranty:

– Manufacturers provide customer support and warranty services to address any issues that arise with hydraulic cylinders. They offer technical assistance, troubleshooting guidance, and replacement of defective components. The warranty ensures that customers receive reliable and durable hydraulic cylinders and provides recourse in case of any manufacturing defects or premature failures. Strong customer support and warranty policies reflect the manufacturer’s commitment to the durability and reliability of their products.

In summary, manufacturers ensure the durability and reliability of hydraulic cylinders through the use of high-quality materials, robust design practices, stringent manufacturing processes, advanced sealing technology, thorough performance testing, compliance with industry standards, regular maintenance guidelines, and customer support with warranty services. By focusing on these aspects, manufacturers can produce hydraulic cylinders that can withstand demanding conditions, provide long service life, and deliver reliable performance in various applications.

hydraulic cylinder

Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders

Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:

  1. Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
  2. Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
  3. Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
  4. Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
  5. Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.

In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.

hydraulic cylinder

How do hydraulic cylinders handle variations in load, pressure, and speed?

Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here’s a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:

Variations in Load:

– Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.

Variations in Pressure:

– Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.

Variations in Speed:

– Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder’s extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder’s movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder’s movement.

Load-Sensing Technology:

– Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.

Accumulators:

– Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.

In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.

China Custom Rch-121, 13.8 Ton Capacity, 1.63 in Stroke, Single-Acting, Hollow Plunger Hydraulic Jack Cylinder CZPT Same   wholesaler China Custom Rch-121, 13.8 Ton Capacity, 1.63 in Stroke, Single-Acting, Hollow Plunger Hydraulic Jack Cylinder CZPT Same   wholesaler
editor by CX 2024-01-30